This week, Cleveland Clinic unveiled their annual Top 10 Medical Innovations of 2019 selected by a panel of Cleveland Clinic physicians and scientists, led by Michael Roizen, M.D., Chief Wellness Officer at Cleveland Clinic.
Ranked by anticipated importance, here are the Top 10 Medical Innovations of 2019:
1. Alternative Therapy for Pain: Fighting the Opioid Crisis
Pharmacogenomic testing, which uses a patient’s genetic makeup to predict an individual’s metabolism of drugs, including some opiate-based drug. Pharmacogenomic testing can be used to avoid adverse reactions and eliminate unnecessary and ineffective prescriptions, replacing them with more effective medications.
Pharmacogenomics can also be used to predict who may have little or no pain relief to some opiate-based analgesics. Such patients might otherwise finish their prescription quickly and return for a new prescription earlier than expected.
Pharmacogenomics can reduce or eliminate the stigma of “drug-seeking” that might be unfairly ascribed to such patients and provide the opportunity to tailor medication therapy. In 2019, with increased access to genetic testing, pharmacogenomics is poised to make significant inroads into precision medicine and potentially an end to the crisis.
2. The Advent of AI in Healthcare
Today, artificial intelligence is helping physicians make smarter decisions at the point of care, improving the ease and accuracy of viewing patient scans and reducing physician burnout. For instance, machine learning algorithms have the ability to highlight problem areas on images, aiding in the screening process and quickly making sense of the mountains of data within a physician’s EMR system. With AI’s continued integration into healthcare, caring for patients has become a matter of working smarter, not harder.
3. Expanded Window for Acute Stroke Intervention
When it comes to stroke intervention, a timely response is critical. Prolonged lack of blood flow following a stroke can cause irreversible destruction, often resulting in disability. In many cases of stroke, intervention methods can be deployed to save tissue. But until now, the intervention of a stroke has only been recommended within a limited window of time. Released this past year, new guidelines suggest an expanded window for treatment. This lengthened timeframe is anticipated to lower the risk of disability and provide an opportunity for recovery to an increased number of future stroke patients.
4. Advances in Immunotherapy for Cancer Treatment
Cancer immunotherapy, or biologic therapy, is a technique that uses the body’s own immune system to fight cancer. While immunotherapies for cancer have existed for some time, the worldwide work toward a cure for cancer continues to highlight new and novel immunotherapeutic targets.
Scientists are creating life-changing new cancer treatments through the concepts of joint therapy and engineered T-cells. With the near-daily discovery of new immunotherapeutic targets and biomarkers, it is the hope that effective therapies will soon exist for all tumor profiles.
5. Patient-Specific Products Achieved with 3D Printing
Utilizing 3D printing technology, medical devices can now be matched to the exact specifications of a patient. Designed to be more compatible with an individual’s natural anatomy, devices modeled from patient-specific dimensions have shown greater acceptance by the body, increased comfort, and improved performance outcomes.
The versatility provided by 3D printing gives medical practitioners the ability to provide patients with the most advanced care, while simultaneously minimizing the risk of complication. Currently, the most significant work in this space includes external prosthetics, cranial/orthopedic implants, and customized airway stents for diseases narrowing the airway.
Work in prosthetics and other bodily implants is also gaining speed with some cleared for the commercial market. The technology has also been found helpful in surgical planning. To date, the technology has been used for many complicated heart surgeries and even the Cleveland Clinic’s most recent total face transplant. With its widening healthcare applications, 3D printing is increasing the attention to detail in patient care.
6. Virtual and Mixed Reality for Medical Education
Now popular for medical education, VR/MR programs provide simulation training that serves to enhance traditional medical schooling. With this immersive style of learning, VR/MR training appeals to all types of learners: audio, visual and kinesthetic. Education via simulation is a productive step toward the system’s most adept and confident healthcare providers.
7. Visor for Prehospital Stroke Diagnosis
Though less common than ischemic strokes, hemorrhagic strokes – during which blood escapes from a ruptured blood vessel in the brain – are responsible for nearly 40 percent of stroke deaths. Rapid diagnosis is necessary for effective treatment, as uncontrolled bleeding can lead to swelling of, and damage to, the brain. To speed diagnosis, healthcare professionals are using new, advanced technologies such as the hemorrhage scanning visor, which can detect bleeding in the brain. An efficient diagnostic tool, the visor for prehospital hemorrhage scanning serves to speed up diagnosis and the ever-important time to treatment.
8. Innovation in Robotic Surgery
Robots in the operating room provide surgeons with guidance for extreme precision in surgery. Today, surgical platforms are highly advanced and are being used anywhere from spine to endovascular procedures. Shortened recovery time and limited pain after surgery are just a few of the patient benefits seen with minimally invasive robotized surgery. Continued advancement in the field has led to more precise and effective surgeries with improved surgical outcomes.
9. Mitral and Tricuspid Valve Percutaneous Replacement and Repair
Hot on the trail of aortic valve percutaneous intervention, recent percutaneous mitral and tricuspid valve intervention has yielded significant positive outcomes while filling a void in the field of heart surgery. The exploration of this technology in a greater patient population is ongoing, but with promising post-op results, the innovation has significant implications for the future of cardiac care.
10. RNA-Based Therapies
RNA-based therapies are the newest innovation in labs nationwide and have shown immense potential. Interfering with genetic data at the ribonucleic acid (RNA) level gives scientists the ability to intercept a patient’s genetic abnormality before it is translated into functioning (or nonfunctioning) proteins. Today, the most popular and successful mechanisms of RNA therapy include antisense nucleotides and RNA interference. These new therapies are being explored in a variety of rare genetic diseases such as Huntington’s disease, as well as in cancer and neurologic diseases, with the hope of treatment by way of alternate genetic data.
Recent Comments